9,622 research outputs found

    Three-dimensional simulations of solar magneto-convection including effects of partial ionization

    Full text link
    Over the last decades, realistic 3D radiative-MHD simulations have become the dominant theoretical tool for understanding the complex interactions between the plasma and the magnetic field on the Sun. Most of such simulations are based on approximations of magnetohydrodynamics, without directly considering the consequences of the very low degree of ionization of the solar plasma in the photosphere and bottom chromosphere. The presence of large amount of neutrals leads to a partial decoupling of the plasma and the magnetic field. As a consequence of that, a series of non-ideal effects (ambipolar diffusion, Hall effect and battery effect) arises. The ambipolar effect is the dominant one in the solar chromosphere. Here we report on the first three-dimensional realistic simulations of magneto-convection including ambipolar diffusion and battery effects. The simulations are done using the newly developed Mancha3D code. Our results reveal that ambipolar diffusion causes measurable effects on the amplitudes of waves excited by convection in the simulations, on the absorption of Poynting flux and heating and on the formation of chromospheric structures. We provide a low limit on the chromospheric temperature increase due to the ambipolar effect using the simulations with battery-excited dynamo fields.Comment: To appear in Astronomy & Astrophysic

    Numerical simulations of quiet Sun magnetic fields seeded by Biermann battery

    Full text link
    The magnetic fields of the quiet Sun cover at any time more than 90\% of its surface and their magnetic energy budget is crucial to explain the thermal structure of the solar atmosphere. One of the possible origins of these fields is due to the action of local dynamo in the upper convection zone of the Sun. Existing simulations of the local solar dynamo require an initial seed field, and sufficiently high spatial resolution, in order to achieve the amplification of the seed field to the observed values in the quiet Sun. Here we report an alternative model of seeding based on the action of the Bierman battery effect. This effect generates a magnetic field due to the local imbalances in electron pressure in the partially ionized solar plasma. We show that the battery effect self-consistently creates from zero an initial seed field of a strength of the order of micro G, and together with dynamo amplification, allows the generation of quiet Sun magnetic fields of a similar strength to those from solar observations.Comment: To appear in Astronomy & Astrophysic

    High frequency waves in the corona due to null points

    Full text link
    This work aims to understand the behavior of non-linear waves in the vicinity of a coronal null point. In previous works we have showed that high frequency waves are generated in such magnetic configuration. This paper studies those waves in detail in order to provide a plausible explanation of their generation. We demonstrate that slow magneto-acoustic shock waves generated in the chromosphere propagate through the null point and produce a train of secondary shocks that escape along the field lines. A particular combination of the shock wave speeds generates waves at a frequency of 80 mHz. We speculate that this frequency may be sensitive to the atmospheric parameters in the corona and therefore can be used to probe the structure of this solar layer

    Population structure, phenotypic information and association studies in long-generation crops

    Get PDF
    Poster presented at Generation Challenge Program Annual Research Meeting. Sao Paulo (Brazil), 12-16 Sep. 200

    On the heating of source of the Orion KL hot core

    Full text link
    We present images of the J=10-9 rotational lines of HC3N in the vibrationally excited levels 1v7, 1v6 and 1v5 of the hot core (HC) in Orion KL. The images show that the spatial distribution and the size emission from the 1v7 and 1v5 levels are different. While the J=10-9 1v7 line has a size of 4''x 6'' and peaks 1.1'' NE of the 3 mm continuum peak, the J=10--9 1v5 line emission is unresolved (<3'') and peaks 1.3'' south of the 3 mm peak. This is a clear indication that the HC is composed of condensations with very different temperatures (170 K for the 1v7 peak and >230>230 K for the 1v5 peak). The temperature derived from the 1v7 and 1v5 lines increases with the projected distance to the suspected main heating source I. Projection effects along the line of sight could explain the temperature gradient as produced by source I. However, the large luminosity required for source I, >5 10^5 Lsolar, to explain the 1v5 line suggests that external heating by this source may not dominate the heating of the HC. Simple model calculations of the vibrationally excited emission indicate that the HC can be internally heated by a source with a luminosity of 10^5 Lsolar, located 1.2'' SW of the 1v5 line peak (1.8'' south of source I). We also report the first detection of high-velocity gas from vibrationally excited HC3N emission. Based on excitation arguments we conclude that the main heating source is also driving the molecular outflow. We speculate that all the data presented in this letter and the IR images are consistent with a young massive protostar embedded in an edge-on disk.Comment: 13 pages, 3 figures, To be published in Ap.J. Letter
    • …
    corecore